Structure Reports

Online
ISSN 1600-5368

(N, N-Diethyldithiocarbamato- $\kappa^{2} S, S^{\prime}$)iododiphenyltin(IV)

Lai-Jin Tian, ${ }^{\text {a }}$ * Wu-Tao Mao, ${ }^{\text {a }}$ Guo-Xia Tan ${ }^{\text {b }}$ and Yu-Xi Sun ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China, and ${ }^{\mathbf{b}}$ Experiment Centre, Linyi Normal
University, Linyi 276000, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.031$
$w R$ factor $=0.069$
Data-to-parameter ratio $=19.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right) \mathrm{I}\right]$, is five-coordinate in a distorted $\mathrm{SnIC}_{2} \mathrm{~S}_{2}$ trigonal-bipyramidal environment.

Comment

The structures of some chloro- and bromodiorganotin N, N dialkyldithiocarbamates, $R_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CN}^{\prime}{ }_{2}\right) X(X=\mathrm{Cl}, \mathrm{Br})$, have shown that the tin atom exists in a distorted $\mathrm{Sn} X \mathrm{C}_{2} \mathrm{~S}_{2}(X=\mathrm{Cl}$, $\mathrm{Br})$ trigonal-bipyramidal environment (Tiekink, 1992; Tiekink et al.,1999; Yin et al., 2001; Tian et al., 2006). In the iodinecontaining title compound, (I), the Sn atom is also fivecoordinate and has a distorted trigonal-bipyramidal geometry (Fig. 1 and Table 1). The equatorial plane is defined by atoms C 1 and C 7 of the phenyl groups and the more tightly held atom S1 of the asymmetrically chelating dithiocarbamate ligand, and the axial positions are occupied by the less tightly held atom S2 and I1, the $\mathrm{I} 1-\mathrm{Sn} 1-\mathrm{S} 2$ angle being 155.48 (3) ${ }^{\circ}$. The Sn atom lies 0.1601 (3) \AA out of the SC_{2} trigonal plane in the direction of the I atom. The dihedral angle between the two benzene ring mean planes ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 12$) is 89.7 (3) ${ }^{\circ}$.

(I)

The dithiocarbamate ligand in (I) is anisobidentically chelated to the Sn atom with a difference of 0.2194 (10) \AA between $\mathrm{Sn} 1-\mathrm{S} 2$ and $\mathrm{Sn} 1-\mathrm{S} 1$; the average $\mathrm{Sn}-\mathrm{S}$ bond distance is 2.5601 (10) \AA, which is similar to those found in $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right) \mathrm{Cl}$ (Dakternieks et al., 1992), $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CN}\right.$ $\left.\mathrm{Cy}_{2}\right) \mathrm{Cl}$ (Basu Baul \& Tiekink, 1993), $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEtCy}\right) \mathrm{Cl}$ (Hall \& Tiekink, 1995), $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}$ (Yin et al., 2001) and $\mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Br}$ (Tian et al., 2006).

Experimental

A solution of $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.45 \mathrm{~g}, 2 \mathrm{mmol})$ dissolved in methanol (40 ml) was added dropwise to a solution of diphenyl$\operatorname{tin}(\mathrm{IV})$ diiodide ($1.05 \mathrm{~g}, 2 \mathrm{mmol}$) in the same solvent (40 ml). The reaction mixture was stirred for about an hour under reflux. The
solvent was removed by using a rotary evaporator. The solid obtained was washed with hot hexane, and then extracted into dichloromethane and filtered. The colorless solid product obtained by removal of dichloromethane was recrystallized from chloroformethanol (1:2 $\mathrm{v} / \mathrm{v})$ and crystals of (I) were obtained from dichloro-methane-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) by slow evaporation at 298 K (yield 69.7%; m.p. 378-379 K). Analysis found: C 37.25 , H 3.67, N 2.56%; calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{INS}_{2} \mathrm{Sn}: \mathrm{C} 37.19$, H 3.52, N 2.47%.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right) \mathrm{I}\right]$
$V=996.3(2) \AA^{3}$
$M_{r}=548.05$
Triclinic, $P \overline{1}$
$a=9.3949$ (12) \AA
$b=9.9245$ (13) \AA
$c=11.5388$ (15) A
$\alpha=109.266(2)^{\circ}$
$\beta=99.058$ (2) ${ }^{\circ}$
$\gamma=93.168(2)^{\circ}$
$Z=2$
$D_{x}=1.827 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=3.04 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless
$0.19 \times 0.07 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEX CCD diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.596, T_{\text {max }}=0.816$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.069$
$S=1.03$
3867 reflections
199 parameters

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 30% probability level.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Basu Baul, T. S. \& Tiekink, E. R. T. (1993). Main Group Met. Chem. 16, 201207.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dakternieks, D., Zhu, H., Masi, D. \& Mealli, C. (1992). Inorg. Chem. 31, 36013606.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hall, V. J. \& Tiekink, E. R. T. (1995). Main Group Met. Chem. 18, 217-223.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, L.-J., Mao, W.-T., Sun, Y.-X. \& Liu, X.-C. (2006). Acta Cryst. E62, m1675m1676.
Tiekink, E. R. T. (1992). Main Group Met. Chem. 15, 161-186.
Tiekink, E. R. T., Hall, V. J. \& Buntine, M. A. (1999). Z. Kristallogr. 214, 124134.

Yin, H.-D., Wang, C.-H., Ma, C.-L., Wang, Y. \& Zhang, R.-F. (2001). Chin. J. Org. Chem. 21, 1117-1121.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

